Organic Chemistry Prep Workshop – Day 2

Drawing Organic Structures

- Lewis Structures Includes all atoms, all bonds, and all lone pair electrons.
- Kekulé Structures Lewis structures with the lone pairs omitted.

Skeletal Structures

- Also called bond-line structures
- Drawn in a zig-zag fashion
- Each end represents a carbon
- Each vertex represents a carbon
- · The hydrogen on carbons are implied

- Heteroatoms (O, N, S, Cl, etc.) must be drawn in.
- Hydrogen bonded to heteroatoms must be drawn in.
- Lone pairs may be drawn in but are often omitted.

You Try 2-1 For each structure below, determine the number of hydrogen that are present on every atom.		
NH ₂	Br	⊕ ⊕ :

You Try 2-2		
Every structure below has a problem. Determine what is wrong with each.		
-NH	ö:	H
0	0	ЭН

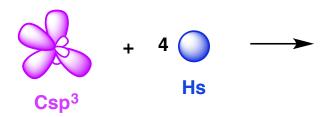
Draw a valid skeletal structure for each of the following. $\begin{array}{c} H_{3C} \\ H_{3C}$

Atomic Orbitals

Hydrogen: 1s¹

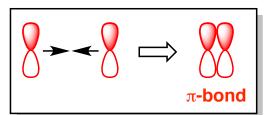
s-orbital

Bonding = orbital overlap Bonding in H₂: Sigma (σ) bonds are formed by the head-on overlap of orbitals.

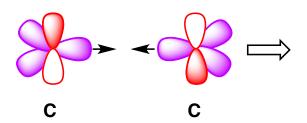

Why is CH₄ tetrahedral with four equivalent bonds?

Hybridization

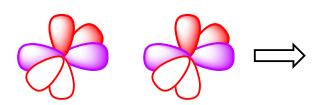
Orbitals can hybridize to become more stable.

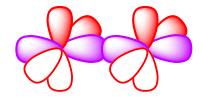


Bonding in Methane (CH₄)


Bonding in Ethane (H₃C-CH₃)

Bonding in Ethene (H₂C=CH₂)


Sigma (σ) bonds are formed by the head-on overlap of orbitals.


Pi (π) bonds are formed by the side-on overlap of p-orbitals.

$$\int_{H} c = c \int_{H}$$

Bonding in Ethyne (HC≡CH)

You Try 2-4		
Construct an orbital picture for each of the following:		
:NH ₃	H	

Hybridization Summary

An atom with 4 groups is sp³ hybridized.

- Tetrahedral Geometry
- 109.5° bond angles

What counts as a group?

A bond: — = =

A lone pair of electrons: ••

An atom with 3 groups is sp² hybridized.

- **Trigonal Planar Geometry**
- 120° bond angles

An atom with 2 groups is sp hybridized.

- **Linear Geometry**
- 180° bond angles

Analyzing an Atom's Orbitals

You Try 2-5 Determine the hybridization for every non-hydrogen atom in each molecule below.			
$\equiv -\langle$	но Н		⊕ H ₃ C ^{∕CH} 2

You Try 2-6

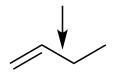
For each structure, determine the orbitals that make up the indicated bonds.

$$H_{\overline{\downarrow}}C \stackrel{\psi}{=} C_{\overline{\downarrow}}CH_3$$

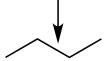
$$H_3C$$
 C H_3

Bond Strength and Length

Compare single, double, and triple bonds.


$$H_3C$$
— CH_3

$$H_2C = CH_2$$


s-Orbitals lie closer to the positively charged nucleus than p-orbitals. Therefore, electrons (-) in s-orbitals are held more tightly.

Higher % s-character = more tightly held e- = shorter/stronger bond.

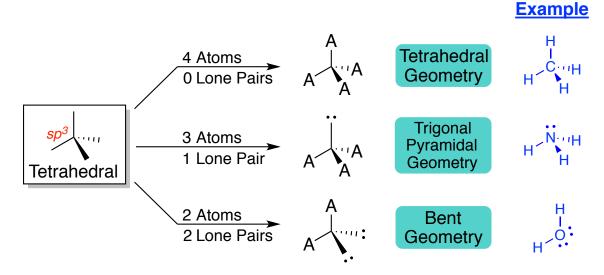
$$sp^3 = 25\% \text{ s}, 75\% \text{ p} ---- sp^2 = 33\% \text{ s}, 66\% \text{ p} ---- sp = 50\% \text{ s}, 50\% \text{ p}$$

VS

You Try 2-7

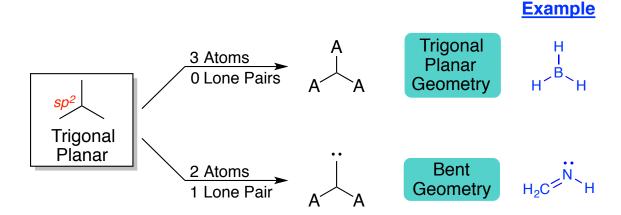
Rank the indicated bonds in the molecule below from strongest (1) to weakest (4).

VSEPR

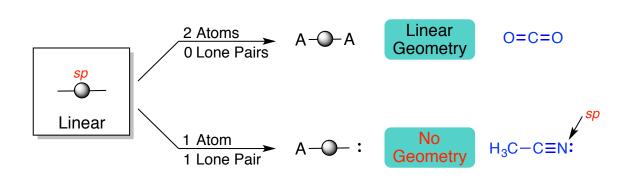

Valence Shell Electron Pair Repulsion Theory

Electron Pair Arrangement = how the groups (bonds & lone pairs) are arranged around the central atom.

Geometry = how the atoms are arranged.


sp³ Geometries

Electron Pair Arrangement = tetrahedral


sp² Geometries

Electron Pair Arrangement = trigonal planar

sp Geometry

Electron Pair Arrangement = Linear

Example

You Try 2-8 For each molecule, determine the electron pair arrangement and geometry around the indicated atom.			
:Br:	но		
Ö †	⊕	©	

Molecular Polarity

Bond Dipole = The dipole for an individual bond.

Molecular Dipole = Vector sum of the individual bond dipoles in a molecule.

If a molecule has a net molecular dipole moment, the molecule is said to be polar.

In a molecule, there are individual dipoles associated with:

- A-B bond (A → B) where B is more electronegative than A
- A-: where the dipole moment points to the lone pair A→:

You must first determine the molecular geometry in order to determine whether or not a molecule is polar.

You Try 2-9			
Determine whether or not each molecule is polar. If it is polar, draw the net molecular dipole.			
H ₃ C-S-CH ₃	HO H HO C H	Br— — Br	

Increasing Strength

Intermolecular Forces

van Der Waals (London Dispersion) Forces – Exists in all molecules. Causes by very slight instantaneous dipoles.

Dipole-Dipole Interactions – Results from the attraction of molecules that have a permanent molecular dipole.

Hydrogen Bonding – Interaction between an O, N, or F lone pair of one molecule and the hydrogen bonded to an O, N, or F in another molecule.

<u>van Der Waals (London Dispersion) Forces</u> – Exists in all molecules. Causes by very slight instantaneous dipoles. The strength of van Der Waals forces increase with increasing surface area.

Compare:

<u>Dipole-Dipole Interactions</u> – Results from the attraction of molecules that have a permanent molecular dipole.

<u>Hydrogen Bonding</u> – Interaction between an O, N, or F lone pair of one molecule and the hydrogen bonded to an O, N, or F in another molecule.

Boiling Point

The boiling point for a compound increases as the strength of the intermolecular forces increases.

Rank:

Compare:

$$\sim$$
NH₂

Compare:

$$\sim$$
NH₂

You Try 2-10

For each set of compounds, identify all intermolecular forces present and then rank in order of increasing boiling point.

$$\sim$$
NH₂